171 research outputs found

    Imaging orbitals with attosecond and Ångström resolutions: toward attochemistry? Imaging orbitals with attosecond and Ångström resolutions: toward attochemistry?

    Get PDF
    International audienceThe recently developed attosecond light sources make the investigation of ultrafast processes in matter possible with unprecedented time resolution. It has been proposed that the very mechanism underlying the attosecond emission allows the imaging of valence orbitals with Ångström space resolution. This controversial idea together with the possibility of combining attosecond and Ångström resolutions in the same measurements has become a hot topic in strong-field science. Indeed , this could provide a new way to image the evolution of the molecular electron cloud during , e. g. a chemical reaction in ' real time '. Here we review both experimental and theoretical challenges raised by the implementation of these prospects. In particular , we show how the valence orbital structure is encoded in the spectral phase of the recombination dipole moment calculated for Coulomb scattering states , which allows a tomographic reconstruction of the orbital using first-order corrections to the plane-wave approach. The possibility of disentangling multi-channel contributions to the attosecond emission is discussed as well as the necessary compromise between the temporal and spatial resolutions. (Some figures may appear in colour only in the online journal

    Photoionization time delays

    No full text
    International audienceThe material presented in this chapter is based on important advances realized in " attophysics " which make feasible to follow the motion of electrons in atoms and molecules with attosecond-level time resolution. In this context, time-delays have been recently determined in the process of photoionization by extreme-ultraviolet (xuv) pulses and the question of the significance of these measured delays arises. As we shall outline here, numerical experiments show that they are intimately related to the structure of the ionized species' continuous spectrum. Another point addressed here is that, in experiments, the measurements have the common characteristic to be performed in the presence of an auxiliary infra-red (IR) field, used to " clock " the timing of the process. This implies to adapt the theory treatment to handle such " two-color " photoionization processes. We review a systematic analysis of these features that are characteristic of this class of electronic transitions, when viewed in the time domain

    Enhanced multi-colour gating for the generation of high-power isolated attosecond pulses

    Full text link
    Isolated attosecond pulses (IAP) generated by high-order harmonic generation are valuable tools that enable dynamics to be studied on the attosecond time scale. The applicability of these IAP would be widened drastically by increasing their energy. Here we analyze the potential of using multi-colour driving pulses for temporally gating the attosecond pulse generation process. We devise how this approach can enable the generation of IAP with the available high-energy kHz-repetition-rate Ytterbium-based laser amplifiers (delivering 180-fs, 1030-nm pulses). We show theoretically that this requires a three-colour field composed of the fundamental and its second harmonic as well as a lower-frequency auxiliary component. We present pulse characterization measurements of such auxiliary pulses generated directly by white-light seeded OPA with the required significantly shorter pulse duration than the that of the fundamental. This, combined with our recent experimental results on three-colour waveform synthesis [Phys. Rev. X 4, 021028 (2014)], proves that the theoretically considered multi-colour drivers for IAP generation can be realized with existing high-power laser technology. The high-energy driver pulses, combined with the strongly enhanced single-atom-level conversion efficiency we observe in our calculations, thus make multi-colour drivers prime candidates for the development of unprecedented high-energy IAP sources in the near future

    Attosecond emission from chromium plasma

    Get PDF
    International audienceWe present the first measurement of the attosecond emission generated from underdense plasma produced on a solid target. We generate high-order harmonics of a femtosecond Ti:sapphire laser focused in a weakly ionized underdense chromium plasma. Using the " Reconstruction of Attosecond Beating by Interference of Two-photon Transitions " (RABITT) technique, we show that the 11 th to the 19 th harmonic orders form in the time domain an attosecond pulse train with each pulse having 300 as duration, which is only 1.05 times the theoretical Fourier transform limit. Measurements reveal a very low positive group delay dispersion of 4200 as 2. Beside its fundamental interest, high-order harmonic generation in plasma plumes could thus provide an intense source of attosecond pulses for applications

    Spectrally resolved multi-channel contributions to the harmonic emission in N 2

    Get PDF
    International audienceWhen generated in molecules, high-order harmonics can be emitted through different ionization channels. The coherent and ultrafast electron dynamics occurring in the ion during the generation process is directly imprinted in the harmonic signal, i.e. in its amplitude and spectral phase. In aligned N2 molecules, we find evidence for a fast variation of this phase as a function of the harmonic order when varying the driving laser intensity. Basing our analysis on a three-step model, we find that this phase variation is a signature of transitions from a single- to a multi-channel regime. In particular, we show that significant nuclear dynamics may occur in the ionization channels on the attosecond timescale, affecting both the amplitude and the phase of the harmonic signal

    Molecular orbital tomography from multi-channel harmonic emission in N2

    Get PDF
    International audienceHigh-order harmonic generation in aligned molecules can be used as an ultrafast probe of molecular structure and dynamics. By characterizing the emitted signal , one can retrieve information about electronic and nuclear dynamics occurring in the molecule at the attosecond timescale. In this paper , we discuss the theoretical and experimental aspects of molecular orbital tomography in N 2 and investigate the influence of multi-channel ionization on the orbital imaging. By analyzing the spectral phase of the harmonic emission as a function of the driving laser intensity , we address two distinct cases , which in principle allow the orbital reconstruction. First , the contributions from two molecular orbitals could be disentangled in the real and imaginary parts of the measured dipole , making it possible to reconstruct both orbitals. Second , by decreasing the driving laser intensity , the transition from a multi-channel to a single-channel ionization regime is shown. The highest occupied molecular orbital may then be selected as the only one contributing efficiently to the harmonic emission. The latter approach paves the way towards the generalization of tomography to more complex systems

    Attosecond chirp-encoded dynamics of light nuclei Attosecond chirp-encoded dynamics of light nuclei

    Get PDF
    International audienceWe study the spectral phase of high-order harmonic emission as an observable for probing ultrafast nuclear dynamics after the ionization of a molecule. Using a strong-field approximation theory that includes nuclear dynamics, we relate the harmonic phase to the phase of the overlap integral of the nuclear wavefunctions of the initial neutral molecule and the molecular ion after an attosecond probe delay. We determine experimentally the group delay of the high harmonic emission from D 2 and H 2 molecules, which allows us to verify the relation between harmonic frequency and the attosecond delay. The small difference in the harmonic phase between H 2 and D 2 calculated theoretically is consistent with our experimental results
    corecore